
Deep Learning : Towards Building Truly Intelligent
Machines

Saurabh V. Pendse
Department of Computer Science
North Carolina State University

Raleigh, North Carolina 27695-8206
Email: svpendse@ncsu.edu

I. ABSTRACT

Abstract—This paper provides an introduction to the field of
deep learning and the associated frameworks such as Restricted
Boltzmann Machines (RBMs), Deep Belief Networks (DBNs),
Convolutional Neural Networks (CNNs), Autoencoders and oth-
ers. We first give a short background of machine learning and
shallow architectures like Perceptrons, SVMs and provide the
motivations behind deep learning. We then proceed to discuss
some important breakthroughs in training deep architectures as
well as examine the state-of-the-art deep learning algorithms. We
illustrate the usefulness of deep learning algorithms by discussing
real-world applications and highlight the challenges, trends and
future work in the field of deep learning.

Keywords-Machine Learning, Intelligence, Cognition, Hierar-
chy, Neural Networks, Pre-training

II. INTRODUCTION

A fundamental goal behind half a century of AI research
has been to enable machines to model the world well enough
to exhibit what we define as ”intelligence”. To achieve this,
it is clear that a large quantity of information about our
world should somehow be stored, explicitly or implicitly,
in machines. The vast body of research on building intelli-
gent systems indicates that the problem of AI seems to be
a problem of knowledge representation. According to Jeff
Hawkins, ”Finding a good representation for the massive
amount of knowledge about the world is hard enough, it is
compounded by the need to efficiently extract contextually
relevant knowledge depending on the situation” [14].

The traditional approach to AI was born with the digital
computer. Alan Turing was one of the proponents of the idea
of a general-purpose computer. In a seminal paper [40], he
described the idea of a universal turing machine with three
essential parts : a processing box, a paper tape, and a device
that reads and writes marks on the tape as it moves back and
forth. This became the basis for all of computing today i.e.
the CPU and the concept of linear memory in the computer.

Today, computers based on this fundamental principle can
be used to emulate a lot of things. Although much progress
has been made in understanding and improving learning
algorithms, the challenge of AI still remains: Do we have
algorithms that can infer enough semantic concepts in order
to be able to interact with most humans using these contexts?
The answer is ”no”. If we consider image recognition, one of

the best specified of the AI problems, we realize that we do not
yet have learning algorithms that can discover the many visual
and semantic concepts that would seem trivial for humans. The
situation is similar for other problems as well.

The human brain is undoubtedly one of the most compli-
cated systems in the world. It consists of billions of cells,
known as neurons, with trillions of connections between them.
After almost a century of neuroscience research, scientists
still have no definitive idea about how the brain is able to
perform tasks so well. Brains are known to have a completely
different architecture as compared to machines. There has been
a significant amount of progress in understanding the structure
of the brain in the past two decades [7], [13], [44].

Deep learning is a subfield of Artificial Intelligence that has
recently gained a lot of prominence [3], [5], [17]–[19]. It is
based on modeling the structure of the human brain, which is
capable of processing complex input data, quickly producing
thought patterns from the collected knowledge about the
world, and solving different kinds of complicated learning and
cognition problems well. It aims to switch these features of the
human brain into a learning model which can deal with high-
dimensional data, support fast learning algorithms and perform
well in the complicated AI problems such as Computer Vision
or Natural Language Processing. Deep architectures are a
promising step towards creating such a model.

In this paper, we present a review of the fundamental ideas
and motivation behind deep learning and examine the state-
of-the-art deep learning frameworks and computing models.
Section III starts with the motivating factors behind deep
learning. Section IV explores the history of learning archi-
tectures as well as the current state-of-the-art deep learning
algorithms. Section V discusses some of the recent and in-
teresting applications of these algorithms in various domains.
Section VI discusses the pressing challenges, trends and future
work in deep learning. Finally, Section VII provides the overall
conclusions of this paper.

III. MOTIVATION

The major motivations for studying deep learning architec-
tures and algorithms can be described as follows :

A. Depth and Performance

There exists a strong relationship between a machine learn-
ing architecture’s depth and its performance in real-world
problems. For most cases like Logic Gates, Radial Basis
Functions (RBF) units like in SVM, a depth of 2 is sufficient to
represent any function with a given target accuracy. However,
this comes at a price of increased complexity. Theoretical
results indicate that there exist function classes for which
the complexity grows exponentially with the input size. Deep
architectures can be viewed as a type of factorization. There
exist many functions that can be represented efficiently with a
deep architecture, but cannot be represented efficiently with a
shallow architecture [3], [10]. This is indicative of some high-
level patterns in the underlying function to be represented.

B. Architecture of the brain

The brain has a deep architecture. From an AI perspective,
the part of the brain that is most interesting is the neocortex
(60% of the volume of the brain). It is the location of all
high-level knowledge. It is a flat sheet of cells, roughly equal
to the size of a table cloth and consists of about 30 billion
cells (or neurons). Neuroscientists have recently discovered
that the neocortex has a remarkably regular structure. Knowl-
edge arises from connections between neurons in different
regions of the neocortex which has a hierarchical self-learning
structure. For example, the well-studied visual cortex shows
a hierarchy of layers of neurons, each of which contains a
representation of the input. Each level of this feature hierarchy
represents the input at a different level of abstraction, with
better abstractions further up in the hierarchy, defined as
compositions of lower-level features.

C. Nature of Cognitive processes

It has been scientifically proven [7], [13], [44] that humans
organize their ideas and concepts hierarchically. We first
learn simpler concepts and then compose them to represent
more abstract ones. For example, large-scale software systems
are often developed using a modular approach, with each
module performing some simple transformation of data, and
the compositions of modules ultimately resulting in complex
and capable systems.

The brain learns a generative model of the given input
across multiple layers of features in the neocortex without
any supervision. Traditional algorithms like backpropagation,
SVMs require labeled training data. Moreover, the learning
time does not scale well in networks with multiple hidden
layers. Contrary to this, the brain uses almost all unlabeled
data, and fits about 1014 connection weights in time of the
order of 109 seconds (average human lifespan). Labels alone
cannot possibly provide enough information to achieve this
kind of learning.

IV. DEEP ARCHITECTURES

The computations performed by a learnt function can be
decomposed into a flow graph of simpler operations. A flow

graph is nothing but a graphical representation of a compu-
tation, wherein each node represents an atomic computation
and the result of the computation is applied to the values at
the children of that node. The Figure 1 illustrates an example.

Fig. 1. A flow graph for computing the function x · sin(ax+b) [2].

A particular property of such flow graphs is depth i.e.
the length of the longest path from an input to an output.
Traditional feedforward neural networks can be considered
to have depth equal to the number of layers. Support Vector
Machines have a depth of 2, one for the kernel outputs or
for the feature space, and one for the linear combination
producing the output [3]. A complex learning problem, when
solved on an architecture with insufficient depth may require
an exponential-sized architecture. However, the same problem
with sufficient depth results in a compact representation [3].
Although very promising, training deep architectures was
extremely difficult which resulted in their failure. However, a
breakthrough [19] in 2006 unlocked the true potential of deep
architectures and has since resulted in widespread success.

In contrast to shallow architectures like perceptrons, SVMs
or kernel machines which only contain a fixed base func-
tion and typically a linear weight-combination layer, deep
architectures refer to multi-layer networks where two adjacent
layers are connected to each other in a specific way. Bengio
and Lecun [5] state that ”deep architectures are compositions
of many layers of adaptive non-linear components, in other
words; they are cascades of parameterized non-linear modules
that contain trainable parameters at all levels.”

We will now understand how deep architectures relate to
two core problems in Artificial Intelligence : Knowledge
Representation and Learning, by providing a brief history
about the developments of deep and shallow networks.

A. Historical Development of Learning Architectures

Shallow architectures have been around since the very
inception of AI. There is an interesting history behind the
changes in attitude of the AI community towards deep and
shallow architectures.

1) Perceptrons: Frank Rosenblatt proposed the idea of an
artificial brain, or the Perceptron, around 1960 [35]. It had
one hand-crafted feature layer, and tried to implement object
recognition by learning weight vectors combining all the

features in a particular manner. Its capability to classify basic
shapes like triangles and squares led researchers to believe that
a machine capable of sensing, learning and recognizing like
humans could be invented. However, one of the fundamental
limitations of the Perceptron was that the feature layer was
fixed and crafted by humans which contradicts to the notion of
”intelligence”. In 1969, Minsky and Papert [29] demonstrated
that its single layer structure limited the functions it could
learn. For instance, a XOR function could not be learnt.

2) Neural Networks with hidden layers: Perceptrons pro-
vided an impetus to neural network research, although they
were limited in their capabilities. In 1985, Geoffery Hin-
ton [1], [39] replaced the original fixed feature layer with
several hidden layers, creating the second generation neural
network. Such a network could learn more complicated func-
tions compared to Perceptrons, using a well-known learning
algorithm known as Backpropagation [36]. It worked by back-
propagating the error signal computed at the output layer to
get derivatives for learning, in order to update the weights of
the network until convergence was reached. However it lacked
the ability to train using unlabeled data, which was relevant
to most real-world problems. Moreover, the correcting signal
could be weakened when it passed back via multiple layers.
The training process became very slow and infeasible across
multiple hidden layers and the resulting solutions were often
local optima, rather than the global optima.

While some researchers made improvements to Hinton’s
neural networks, others made improvements on the original
Perceptrons, creating a family of algorithms called Support
Vector Machines (SVMs). These attracted most researchers’
attention, which thwarted the developments of the neural
network.

3) Support Vector Machines (SVMs): The concept of
Support Vector Machines was first proposed by Vapnik in
1995 [24]. It is based on a statistical learning theory, that turns
the hand-crafted feature layer in the original Perceptrons into
a feature layer generated using a fixed method. This method
is known as the kernel trick, which maps the input data into a
high-dimensional space. Then, a clever optimization technique
is adopted to learn the weights combining the feature and data
corresponding to the output [31].

SVMs make learning fast and easy, due to their simple
structure. SVMs work well for many AI problems (e.g. pattern
recognition) wherein the data has a relatively simple structure
i.e. has a small number of features or which doesn’t contain
hierarchical structures [31]. However, when the data itself
contains complicated features, SVMs tend to perform worse
due to their simple structure [19], [42]. Even if the kernel
function maps the input data to a more complicated high-
dimensional space, the procedure is still ”static” or ”fixed”.
Since the kernel functions use a pre-determined mapping
method for every data, SVMs might not be able to extract
all the information present in the data.

One way to mitigate this problem is to add prior knowl-
edge to the SVM model in order to obtain a better feature
layer [24]. However, this involves human intervention and is

highly dependent on the prior knowledge added, which again
diverges from the goal of building truly intelligent machines
capable of autonomous learning. SVMs are still a kind of
Perceptrons which use kernel functions instead of hand-crafted
features, an optimization technique instead of the original
Backpropagation algorithm and can deal with unlabeled data.
Despite the fact that SVMs are good at solving many AI
problems, they are not a good trend for AI due a fundamental
caveat : their performance is highly dependent on the choice
of the appropriate kernel function.

In order to build truly intelligent machines, an architecture
should be capable of learning features autonomously from the
input data, as well as dealing with unlabeled data. Moreover,
the training algorithms should be efficient and general and
it must be applicable to a variety of AI problems. With
these goals in mind, some researchers started looking back
at Hinton’s multi-layer neural networks, trying to exploit its
advantages and overcome its limitations.

B. Breakthrough in Learning Deep Architectures

Before 2006, all attempts at training deep architectures
failed miserably. Training deep supervised feedforward neural
networks in the same manner as shallow architectures (1 or 2
hidden layers) yielded worse results both in terms of training
and test error.

However, a new class of layer-by-layer pre-training algo-
rithms [4], [18], [19], [28] proposed in 2006 and onwards
completely changed the scenario. These algorithms were based
on the following key principles :
• Each layer in the deep network was (pre-)trained in a

completely unsupervised manner.
• The layers were stacked one on top of the other. The

output representation at each layer was the input for the
next layer.

• Supervised training was used on the entire network to
fine-tune all the layers.

Since then, a plethora of papers on the subject of deep
learning have been published, with many of them using other
principles to guide training of intermediate representations.

C. Restricted Boltzmann Machines & Deep Belief Networks

Restricted Boltzmann Machines (RBMs) are energy-based
models that associate a scalar energy to each configuration of
the variables of interest. Learning corresponds to modifying
the energy function so that its shape has desirable properties.
For example, desirable configurations would likely have a low
energy. Such models define a probability distribution through
an energy function E(x), such that

p(x) =
e−E(x)

N
(1)

N is the normalizing factor, or the partition function given
by :

N = ∑
x

e−E(x)

Such models can be learnt by performing stochastic gradient
descent on the empirical negative log-likelihood of the training
data. In case of RBMs, the energy function is linear in its free
parameters. To make them powerful enough to represent com-
plex distributions, hidden variables are introduced. Moreover,
the connections are restricted to those without visible-visible
and hidden-hidden connections. The typical configuration of
a RBM also uses binary units (where vi and h j ∈ {0,1}). The
structure of a RBM is shown in the Figure 2.

v0 v1 v2 v3

h0 h1 h2

Fig. 2. The structure of a Restricted Boltzmann Machine [19]. It consists of
visible and hidden units without any lateral connections between them.

A joint configuration of the visible and hidden units (v,h)
has the energy given by [19] :

E(v,h) =− ∑
i∈visible

aivi− ∑
j∈hidden

b jh j−∑
i, j

vih jwi j (2)

where vi, h j are the binary states of the visible unit i and
the hidden unit j, ai, b j are their biases, and wi j represents
the weight between them. Taking the negative of the derivative
with respect to wi j, we have :

−∂E(v,h)
∂wi j

= vih j (3)

In terms of input probability distribution (Equation 1), we have
:

∂ log p(v)
∂wi j

=< vih j >
0 −< vih j >

∞ (4)

where < .. . > denotes the expectation of a random variable,
< vih j >

0 is the positive gradient and < vih j >
∞ is the nega-

tive gradient. These gradients are calculated using alternative
Gibbs sampling, which consists of running a Markov chain of
convergence, using Gibbs sampling as the transition operator.
The goal is to minimize the error between the input and
the model’s generative expectation of the input. Furthermore,
Contrastive Divergence can be used to speed up the learning
process [17], [19]. This requires execution of only one step to
get < vih j >

1. The weight updates are given by :

4wi j =< vih j >
0 −< vih j >

1 (5)

Since RBMs do not have any lateral connections, the visible
and hidden units are conditionally independent given one
another. Thus,

p(h|v) = ∏
i

p(hi|v) (6)

p(v|h) = ∏
j

p(v j|h) (7)

Deep Belief Networks (DBNs) are graphical models which
learn to extract a deep hierarchical representation of the input
data, formed by stacking RBMs on top of each other. They
model a joint distribution between an input x and the m hidden
layers as follows :

P(x,h1,h2, . . . ,hm) =

(
m−2

∏
k=0

P(hk|hk+1)

)
P(hm−1,hm) (8)

where P(hk−1|hk) is a conditional distribution for the visible
units of the RBM at layer k, and P(hm−1,hm) is the visible-
hidden joint distribution at the top-layer RBM. The stacking
is shown in the Figure 3.

Fig. 3. The stacking of RBMs to form a Deep Belief Network

The greatest advantage of DBNs is their capability of
learning features, which is achieved by an unsupervised greedy
layer-by-layer training strategy (known as pre-training) [19]
where the higher-level features are learnt from the lower layers
and are expected to better capture the information contained in
the data. After the pre-training, the weights between adjacent
layers have values that encode the information contained in
the data.

To further improve the performance, these weights are al-
tered using a supervised fine-tuning process. If the pre-trained
DBN is used as a discriminative model, Backpropagation is
used to adjust the detection weights by supervised learning
using the labeled data. It is necessary to ensure that the
learning rate is set to an appropriate value; too large a value
will greatly influence the pre-trained weights while too small
a value will lead to a slow training process. If the pre-
trained DBN is used as a generative model, a wake-sleep
algorithm [16] is used to tune the DBN weights.

D. Autoencoders

Autoencoders [3] are another class of deep architectures
which are similar in their functional form to RBMs. However,
their interpretation and procedures used for training them are
quite different. Deterministic autoencoders consider the real

valued mean as their hidden representation while RBMs sam-
ple a binary hidden representation from the mean. However,
after the initial pre-training, the layers of a RBM are typically
used by propagating the real-valued means through them.

Consider a d−dimensional input vector x which is trans-
formed into its d′-dimensional hidden representation y using
a deterministic mapping function i.e. the encoder. A typical
form of the mapping function is given by :

y = f (x) = s(Wx+b) (9)

where W is the d×d′ weight matrix, while b is the d′×1 bias
vector. The resulting representation y is then mapped back to a
reconstructed d-dimensional vector z (also known as the pre-
image of x using a mapping function g i.e. the decoder).

z = g(y) = s(W′y+b′) (10)

It should be noted that z is not an exact reconstruction of
x, rather it is probabilistic, which may generate x with a high
probability. This results in an associated reconstruction error
to be optimized as part of the training process :

L(x,z)∝− log p(x|z) (11)

Typical choices for the loss function include the squared
error objective for real-valued x, or cross-entropy loss for
binary x. Note that it is possible to use any deterministic loss
function, depending on the suitability with the target applica-
tion. The autoencoder consists of estimating the parameters
so as to minimize the reconstruction error. Intuitively, if a
representation allows a good reconstruction of its input, it
means that it has retained much of the information that was
present in the input.

Traditional autoencoders have been known to perform al-
most as good as RBMs. The main advantage over RBMs
is the simplicity of the training process as compared to the
Energy-based model of the RBM. Moreover, they tend to have
faster convergence. However, one critical issue is that in the
absence of additional constraints, the autoencoder with a d-
dimensional input and an encoding of dimension at least d
could potentially just learn the identity function, for which
many encodings would be useless i.e. just a copy of the input.

1) Denoising Autoencoders (DAE): In order to prevent
traditional autoencoders from learning the identity function,
implicit or explicit regularization of the weights may be
applied, or additional sparsity constraints on the code may be
introduced [18], [19]. RBMs have a very high capacity, and
still not learn the identity function, since they try to capture the
statistical structure in the input, by approximately maximizing
the likelihood of a generative model.

Denoising autoencoders are a variant of traditional autoen-
coders that share this learning paradigm [42]. The denoising
autoencoder minimizes the error in reconstructing the input
from a stochastically corrupted version of the input. The
corruption is achieved by adding random noise to the actual
input. An alternative strategy, however, would be to add noise
in the encoding process.

The intuition behind denoising autoencoders is based on
the fact that a good representation is characterized by one that
can be obtained robustly from a corrupted input and that will
be useful for recovering the corresponding uncorrupted input.
Performing the denoising task requires extracting features that
capture useful structure in the input distribution. The denoising
criterion enables us to use as many hidden units as necessary
to capture the distribution, unlike in an Autoencoder.

Fig. 4. Training algorithm for a Denoising Autoencoder

The Figure 4 depicts the training process for a DAE. The
only difference with Autoencoders is that the input x is first
corrupted to x̃ before mapping to its hidden representation
y. Learning takes place using stochastic gradient descent. It
can be shown that minimizing the stated reconstruction error
(Equation 11) amounts to maximizing the mutual information
between x and y. There can be several types of corruptions and
optimization criteria that can be taken into account depending
upon the intrinsic nature of the problem [42].

The process of denoising can be interpreted as the manifold
assumption, which states that natural high dimensional data
concentrates close to a non-linear low-dimensional manifold.
During the denoising training, we learn a stochastic operator
p(x|x̃) that maps x̃ back to its uncorrupted x. Thus, a denoising
autoencoder can be seen as a way to define and learn a
manifold representing the data.

2) Stacked Denoising Autoencoders: The Stacked Denois-
ing Autoencoder (SDAE) is an extension of the Stacked Au-
toencoder introduced in [5], [41]. The denoising autoencoders
can also be stacked like RBMs to form a deep network by
feeding the output representation of the denoising autoencoder
found on the layer below as the input to the current layer.
The unsupervised pre-training of such an architecture is done
one layer at a time. Each layer is trained as an independent
denoising autoencoder by minimizing the reconstruction error
on the input from the previous layer.

Once all layers have been pre-trained, the network goes
through a second stage known as supervised fine-tuning (simi-
lar to a DBN) where we minimize the prediction error on a su-
pervised task. This is done by adding a logistic regression layer
on top of the network, and then training the entire network
as a single multilayer perceptron. The SDAE algorithm for
training deep networks is known to yield good classification

performance on many standard benchmark problems due to
the representations extracted layer by layer, using a purely
unsupervised local denoising criterion. Moreover, it also learns
feature extractors representing useful structure in the data that
regular autoencoders are unable to learn [42].

E. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are variants of
Multi Layer Perceptrons which draw inspiration from biology.
The mammalian brain is known to have a complex arrange-
ment of cells in the visual cortex [20]. The visual cortex being
the most powerful ”vision” system in existence, it is logical to
emulate its behavior [14], [27], [38]. The cells are sensitive to
small sub-regions of the input space i.e. receptive fields. These
fields are tied in such a way so as to cover the entire visual
field. These filters are local in the input space and are thus
better suited to exploit the strong spatial correlation properties
present in natural images.

CNNs are typically deep i.e. have more than 3 layers
and exploit spatial correlation by enforcing local connectivity
patterns between neurons of adjacent layers. In contrast to
Multi-Layer Perceptrons, which have all-to-all connectivity,
the input hidden neurons in the mth layer are connected only
to a local subset of the neurons in the (m+ 1)th layer. An
example structure is shown in the Figure 5.

Fig. 5. The connectivity between neurons in adjacent layers in CNNs [2].

The neurons in layer m in the Figure 5 have a receptive
field of 3, and are hence connected to 3 neurons from the
layer m−1. The architecture thus confines the learnt filters to
comprise of spatially local patterns.

Fig. 6. Shared weights across the entire visual field in CNNs [2].

Each sparse filter hi is additionally replicated across the
entire visual field. These replicated units form a feature map,
and share the same weight vector and bias (shown by the
shaded region in Figure 6). Replicating units in this manner

allows for features to be detected regardless of their position
in the visual field. Moreover, it greatly reduces the number of
free parameters to be learnt. Stacking many such layers one
above the other leads to non-linear filters which ultimately
encompass the entire vision field. As the input moves higher
up in the hierarchy, it gets transformed into more invariant
representations. Thus, a fast changing pattern at the bottom
of this hierarchy becomes a nearly invariant pattern at the
top. As a result, CNNs achieve better generalization on vision
problems.

F. Sparse Distributed Representations & Sparse Coding

Sparse Distributed Representation (SDR) is a mathematical
model of the human long-term memory [22]. It is primarily
used for storing and retrieving large amounts of information
without focusing on the accuracy of the information. It uses
patterns to serve as memory addresses, where information is
retrieved based on similarities between addresses. A typical
characteristic of such representations is that they are very
sparse i.e. they have a large number of bits, but only a few
are active at a time. Each bit represents some attribute of the
class of objects or concepts being encoded.

Such representations are much longer (e.g. 2000 bits) as
compared to typical ASCII (8 bits) or Unicode (16 bits)
encodings. However, a major difference between the former
and the latter is the meaning associated with every bit in
the code. In case of ASCII or Unicode, an individual bit
has no meaning and one has to look at the entire code to
infer a meaning. However, each bit in a SDR has a semantic
meaning associated with it which can be inferred even by
a single bit activation. Such representations have certain key
properties which make them a good knowledge representation
scheme [15] :
• It is possible to directly compare two SDRs with bit

comparisons. The shared bits directly map to the semantic
similarity between the corresponding objects.

• SDRs can be stored very efficiently by storing only the
indices of the active bits, rather than storing the entire
representations. Moreover, subsampling i.e. storing only
a part of the active bits results only in minimal loss in
the richness of the representation.

• It is very efficient to detect membership of a given
SDR in a group of SDRs by simply comparing the
SDR bits with those of the group’s union. Although
such a technique is probabilistic in nature, it is possible
to show mathematically that given a sufficiently large
SDR, matching done using such a technique is almost
guaranteed to be correct.

1) Sparse Coding: Sparse coding is a type of neural code
which is based on sparse distributed representations. The goal
of sparse coding is to represent input vectors as a sparse
approximate weighted linear combination of basis vectors [43].
For an input vector y ∈ Rk,

y≈∑
j

b js j = Bs (12)

where b1, . . . ,bn ∈ Rk and s ∈ Rn is a sparse vector of
coefficients. Unlike similar methods such as PCA, the basis
set B founded in sparse coding can be overcomplete (n > k),
and can represent nonlinear features of the training set x.
Let X ∈ Rk×m be the input matrix (each column is an input
vector), let B ∈ Rk×n be the basis matrix (each column is a
basis vector), and let S ∈ Rn×m be the coefficient matrix (each
column is a coefficient vector). Then the optimization problem
can be written as (cite efficient sparse coding techniques) :

min
B,S

||X−BS||22 +β ∑
i, j
||Si, j||1 (13)

s.t ∑
i

B2
i, j ≤ c, ∀ j = 1, . . . ,n (14)

Algorithm 1: Self-taught Learning via Sparse Coding [45]
Input : Labeled training set T =

(x(1)l ,y(1)l), . . . ,(x(m)
l ,y(m)

l).
Input : Unlabeled data x(1)u , . . . ,x(k)u .

1 Using unlabeled data x(i)u , solve the optimization problem
13 to obtain the bases B.

2 Compute features for the classification task to obtain a
new labeled training set T̂ using the bases B and the
sparse vectors s(i).

3 Learn a classifier C by applying a supervised learning
algorithm to the labeled training set T̂ .
Output: Learned classifier for the classification task.

Semi-supervised learning using sparse coding could be
extended to multiple layers to train a hierarchy of features
using a supervised classifier at the top [23].

G. Hierarchical Temporal Memory

Hierarchical Temporal Memory (HTM) is another technol-
ogy modeled the mammalian neocortex [15]. The neocortex
is the seat of intelligent thought in the mammalian brain.
Given the diverse suite of cognitive functions, one might
expect the neocortex to implement an equally diverse suite of
specialized neural algorithm. However, research indicates that
the neocortex displays a remarkably uniform pattern of neural
circuitry [7], [44]. The biological evidence suggests that the
neocortex implements a common set of algorithms to perform
many different intelligent functions.

HTM provides a theoretical framework for understanding
the neocortex and its many capabilities. HTM models neurons,
which are arranged in columns, layers, regions, and in a
hierarchy. HTMs can therefore be regarded as a new form of
neural networks. Programming HTMs is unlike programming
traditional computers. HTMs are trained through exposure to
a stream of sensory data, unlike today’s computers [15]. Its
capabilities are determined by what it has been exposed to.

HTM is fundamentally a memory based system that learns
in space as well as time. HTM networks are trained on lots
of time varying data, and rely on storing a large set of
patterns and sequences. The manner in which data is stored is

logically different from the standard model used in computers
today. Classic computer memory has a flat organization and
does not have an inherent notion of time. HTM memory
has a hierarchical organization and is inherently tie based.
Information is always stored in a distributed fashion. One can
control the size of the hierarchy and what to train the system
on, but the HTM controls where and how the information is
stored.

Fig. 7. An example of a HTM hierarchy for image recognition [12]. The
training is done using videos of the training images. These consist of vertical
and horizontal translations, scale and rotate transformations.

The Figure 7 shows a HTM which comprises tree-shaped
hierarchy of levels that are composed of elements called nodes
or cells. Each HTM node has the same basic functionality. A
single level in the hierarchy is known as a region. Higher hier-
archy levels often have fewer nodes and therefore encompass a
greater portion of the field of view. Higher levels can also reuse
patterns learnt at the lower levels and memorize sequences of
more complex patterns. Each HTM region learns by identify-
ing and memorizing spatial patterns and later on identifying
temporal sequences of spatial patterns that are likely to occur
one after another. Level 1 and Level 2 nodes are trained
using a time varying input that is representative of the entire
input domain. For e.g., for an image classification problem,
the training pattern might be videos of the training images,
consisting of translate, rotate and scale transformations. The
node at the top level is then trained using supervision i.e. a
label is associated with every training image presented in every
position.

The Figure 8 shows the structure of a single node and the
inference process in a HTM network, applied to a computer
vision problem. During training, the node receives a temporal

Fig. 8. A fully-learned node in inference mode for 3 time steps [12]. The
node has learnt 12 quantization centers within its spatial pooler and 4 temporal
groups or sequences within its temporal pooler.

sequence of spatial patterns as input. The node learning
algorithm consists of two stages [15] :

1) Spatial Pooling: This identifies frequently observed pat-
terns and stores them as quantization centers. Patterns that are
very similar to each other are treated as one. Therefore, a large
number of possible input patterns are reduced to a manageable
number of known quantization centers.

2) Temporal Pooling: This partitions quantization centers
into temporal groups based on their likeliness to follow each
other in the training sequences using a greedy method [15].
Each group represents a cause of the input pattern [14].

Once all the nodes on one layer have been trained, they are
operated in inference mode to train the nodes in the next higher
layer. This is shown with a ’L’ pattern moving rightwards over
three timesteps in the Figure 8. At each timestep, the spatial
pooler produces a SDR (See Section IV-F) with one of its
learnt quantization centers active. This is passed on to the
temporal pooler which associates a group or sequence with this
pattern. As is evident from the Figure 8, this moving pattern
is recognized as part of a single sequence in the output of the
temporal pooler. Depending upon the connections, the outputs
of these nodes are concatenated to form input patterns for the
nodes in the next higher layer.

Upon convergence, the entire HTM network is operated in
inference mode. Here, each node calculates the probability
that a given pattern belongs to a known temporal sequence.
As this information propagates upwards in the hierarchy, it
forms higher levels of belief about the pattern. This process
is done in an entirely unsupervised manner. Depending upon
the problem, a classifier can be attached to the top level node
in the network to associate appropriate labels with the input
patterns.

V. APPLICATIONS

This section describes selected interesting applications of
deep learning methods to supervised and unsupervised learn-
ing problems reported in literature. The goal here is not

to perform an exhaustive comparison between deep learning
methods, but rather to demonstrate that these methods achieve
better results over a wide range of benchmarks with different
data characteristics.

The first real-world experiments were done in the field
of Computer Vision using SVMs [31] and exhibited better
performance as compared to the then state-of-the-art results
achieved with multilayer perceptrons. However, the recent
class of deep learning algorithms [5], [19], [42] have reversed
the situation.

The Table I shows the test errors obtained on 10 different
classificiation problems [42] comparing the performance of
SVMs with single-layered and multi-layered DBNs, SAEs and
SDAEs. The datasets consist of the standard MNIST digit
classification problem [25] with 60000 training examples, its
challenging variations (with rotations, random noise and image
backgrounds) as well as a variation of the tzanetakis audio
genre classification dataset [6] which contains 10000 three-
second audio clips, equally distributed among 10 musical
genres.

Dataset SVMrb f DBN-1 DBN-3 SDAE-3
MNIST 1.40±0.23 1.21±0.21 1.24±0.22 1.28±0.22
basic 3.03±0.15 3.94±0.17 3.11±0.15 2.84±0.15
rot 11.11±0.28 14.69±0.31 10.30±0.27 9.53±0.26
bg-rand 14.58±0.31 9.80±0.26 6.73±0.22 10.30±0.27
bg-img 22.61±0.37 16.15±0.32 16.31±0.32 16.68±0.33
bg-img-rot 55.18±0.44 52.21±0.44 47.39±0.44 43.76±0.43
rect 2.15±0.13 4.71±0.19 2.60±0.14 1.99±0.12
rect-img 24.04±0.37 23.69±0.37 22.50±0.37 21.59±0.36
convex 19.13±0.34 19.92±0.35 18.63±0.34 19.06±0.34
tzanetakis 14.41±2.18 18.07±1.31 18.38±1.64 16.02±1.04

TABLE I
COMPARISON OF SDAE AND DBN WITH SVM [42]. BEST PERFORMER IS

SHOWN IN BOLD. DBN-1 IS A SINGLE LAYERED DBN. DBN-3 AND
SDAE-3 ARE THREE LAYERED STRUCTURES. SDAE AND DBN

OUTPERFORM SVM FOR ALL DATASETS EXCEPT THE tzanetakis AUDIO
DATASET.

It can be observed that SDAE-3 systematically outperforms
the baseline SVM. For all but one problem, SDAE-3 is either
the best performing algorithm or has its confidence interval
overlap with that of the winning algorithm. The difference
in performance between DBN-1 and SDAE-3 (or DBN-3) is
indicative of the capability of deep networks in extracting
high-level information from the input data. In most cases,
3 layers of denoising autoencoder is on par or better than
stacking 3 layers of RBMs in DBN-3. Numerous comparative
studies [26], [32], [34] have also been conducted on variants
of the MNIST dataset using HTMs, CNNs and Sparse Coding
methods. These methods are generally known to perform better
or as good as SVMs. HTMs are especially better at time-based
inference where the input is a dynamic pattern.

DBNs have also been applied to Information Retrieval
problems. Semantic hashing [37] is a technique that produces
a shortlist of similar documents in a time that is independent
of the size of the document collection and linear in the size
of the shortlist. Moreover, only a few machine instructions
are required per document in the shortlist. Every document
is encoded as a frequency vector of the words present in the

document. The document set is used for learning a stack of
RBMs in which the feature activations of one RBM are treated
as data by the next RBM. This process semantically maps
a 2000 feature frequency vector into a 32-bit binary code.
After pre-training the RBMs are ”unrolled” to create a multi-
layer autoencoder that is fine-tuned using backpropagation.
Documents similar to a query document are then found by
simply accessing all the addresses that differ by only a few bits
from the address of the query document. This method achieves
higher accuracy than applying TF-IDF (Term Frequency-
Inverse Document Frequency) to the entire document set and is
about 20-50x faster than Locality-Sensitive Hashing [9], which
is the fastest current method.

Automatic Speech Recognition (ASR) is another important
application area. State-of-the-art ASR systems typically use
Hidden Markov Models (HMMs) to model the sequential
structure of speech signals, with local spectral varaibliity
modeled using mixtures of Gaussian densities. DBNs have
recently proved to be very effective for such kind of acoustic
modeling. On the standard TIMIT corpus, DBNs have been
shown to consistently outperform other techniques and the
best DBNs achieve a Phone Error Rate (PER) of 23.0% on
the TIMIT core test set [33].

Natural Language Processing (NLP) techniques are used
for information extraction, machine translation, summariza-
tion, search and human-computer interfaces. While complete
semantic understanding is still a far-distant goal, CNNs have
been used to define a unified architecture for NLP that learns
features that are relevant to the tasks at hand given very limited
prior knowledge [8]. This is in contrast to the divide and
conquer approach of identifying several sub-tasks useful for
application development and analysis, such as part-of-speech
tagging, chunking and parsing, word-sense disambiguation,
semantic-role labeling and others. This is achieved by training
the entire network jointly on all these tasks using weight-
sharing, a technique known as multitask learning. All these
tasks use labeled data except the language model which is
learnt from unlabeled text and represents a novel form of semi-
supervised learning for shared tasks. The synergy of these two
techniques improves the generalization of the shared tasks, and
results in state-of-the-art performance.

VI. CHALLENGES AND FUTURE WORK

There has been a great deal of recent work on learning
useful representations of data with deep learning algorithms.
These algorithms have shown promise as a means of learning
invariant representations of data. Despite the recent successes,
many existing hierarchical models are still far from being able
to represent, identify and learn the wide variety of possible
patterns and structure in real-world data. Existing models
cannot cope with new tasks for which they have not been
specifically trained. Massive volumes of training data, high-
dimensional input spaces and multiple categories (in the order
of several tens of thousands) pose challenging questions on
how to effectively train deep models.

Moreover, learning of deep architectures is still an open
problem in itself. There is currently a limited amount of
understanding about why deep learning algorithms perform
so well on certain tasks. Most such algorithms applied to
supervised learning problems often involve an unsupervised
pre-training phase. Although there have been severa divulging
explanations on why unsupervised pre-training helps [5], [10],
[11], this is still an open question and an area of active
research. There is still a significant amount of work to be
done in tuning deep model configurations (for e.g. number of
layers, size of each layer etc.) to best suit the target problems,
something which is currently done in an ad-hoc fashion.

Another significant challenge is to develop systems that
can detect multiple high-order co-occurrences. i.e. situations
where two different entities (words, documents, values) are
contextually relevant. Most deep learning algorithms have
biological motivations, specifically known as the Cortical
Learning Algorithms (CLA). Characterization of the capacity
of these algorithms, implementing them in hierarchies, and
understanding how to integrate multiple input data streams
(corresponding to integration of multiple sensory inputs in
the mammalian brain) are open problems in the field of deep
learning.

Cognitive Computing is a new and exciting area of re-
search [30] that has come about as a result of advances in deep
learning. It deals with making machines think like humans.
Using advanced algorithms and silicon circuitry, the aim is to
develop cognitive systems that can learn through experiences,
find correlations, create hypotheses, and remember - and learn
from - the outcomes. Commercial systems like Grok [21] are
also being developed, based on deep learning principles, with
the goal of providing organizations with analytical expertise
to handle the explosive growth of data.

VII. CONCLUSION

The goal of the present report was to give an introduction
into the field of deep learning. We presented a brief overview
of the deep learning approach and how it differs from the
traditional approach to AI. We highlighted the major moti-
vations behind the concept of deep learning. We looked into
the historical development of learning architectures, outlined
their drawbacks and stated recent breakthroughs in learning
deep architectures. We discussed the major deep learning
algorithms along with some recent and interesting applications
of these algorithms to supervised and unsupervised learning
problems such as Computer Vision, Information Retrieval,
Speech Recognition and Natural Language Processing. Finally,
we presented some of the underlying challenges in this field,
current trends and the scope for future research work. In
conclusion, deep learning is a very promsing field of AI that
is very much in its infancy. Research in the past decade
has provided a good foundation to build upon and move
closer towards the ultimate goal of building truly intelligent
machines.

REFERENCES

[1] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski.
A learning algorithm for boltzmann machines. Cognitive Science,
9(1):147–169, 1985.

[2] Yoshua Bengio. Deep learning tutorials, 2008.
[3] Yoshua Bengio. Learning deep architectures for AI. Foundations and

Trends in Machine Learning, 2(1):1–127, 2009. Also published as a
book. Now Publishers, 2009.

[4] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle.
Greedy layer-wise training of deep networks. Advances in Neural
Information Processing Systems, 19:153, 2007.

[5] Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards
ai. Large-Scale Kernel Machines, 34, 2007.

[6] James Bergstra. Algorithms for classifying recorded music by genre.
PhD thesis, Citeseer, 2006.

[7] Matthew M Botvinick, Yael Niv, and Andrew C Barto. Hierarchically
organized behavior and its neural foundations: A reinforcement learning
perspective. Cognition, 113(3):262–280, 2009.

[8] Ronan Collobert and Jason Weston. A unified architecture for natural
language processing: deep neural networks with multitask learning. In
Proceedings of the 25th International Conference on Machine Learning,
pages 160–167. ACM, 2008.

[9] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni.
Locality-sensitive hashing scheme based on p-stable distributions. In
Proceedings of the 20th Annual Symposium on Computational Geome-
try, pages 253–262. ACM, 2004.

[10] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Man-
zagol, Pascal Vincent, and Samy Bengio. Why does unsupervised pre-
training help deep learning? Journal of Machine Learning Research,
11:625–660, March 2010.

[11] Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Ben-
gio, and Pascal Vincent. The difficulty of training deep architectures
and the effect of unsupervised pre-training. In Proceedings of The
12th International Conference on Artificial Intelligence and Statistics
(AISTATS09), pages 153–160. Citeseer, 2009.

[12] Dileep George and Bobby Jaros. The htm learning algorithms. Technical
report, Numenta Inc., 2007.

[13] Patricia M Greenfield et al. Language, tools and brain: The ontogeny and
phylogeny of hierarchically organized sequential behavior. Behavioral
and Brain Sciences, 14(4):531–551, 1991.

[14] Jeff Hawkins and Sandra Blakslee. On intelligence. Times Books, New
York, 2004.

[15] Jeff Hawkins and Dileep George. The HTM Cortical Learning Algo-
rithms, September 2011.

[16] GE Hinton, P Dayan, BJ Frey, and RM Neal. The ”wake-sleep”
algorithm for unsupervised neural networks. Science, 268(5214):1158–
1161, 1995.

[17] Geoffrey Hinton. A practical guide to training restricted boltzmann
machines. Momentum, 9:1, 2010.

[18] Geoffrey E Hinton. Learning multiple layers of representation. Trends
in Cognitive Sciences, 11(10):428–434, 2007.

[19] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural Computation, 18(7):1527–1554,
July 2006.

[20] David H Hubel and Torsten N Wiesel. Receptive fields and functional
architecture of monkey striate cortex. The Journal of Physiology,
195(1):215–243, 1968.

[21] Numenta Inc. Grok : Action Intelligence for Fast Data. https://www.
numenta.com/product.html/, 2013.

[22] Pentti Kanerva. Sparse distributed memory. MIT Press, 1988.
[23] Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. Fast

inference in sparse coding algorithms with applications to object recog-
nition. CoRR, abs/1010.3467, 2010.

[24] Fabien Lauer and Gérard Bloch. Incorporating prior knowledge in
support vector machines for classification: A review. Neurocomputing,
71(7):1578–1594, 2008.

[25] Y LeCun. Mnist dataset, 2000.
[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. In Intelligent Signal Processing, pages
306–351. IEEE Press, 2001.

[27] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[28] Christopher Poultney MarcAurelio Ranzato, Sumit Chopra, and Yann
LeCun. Efficient learning of sparse representations with an energy-based
model. Advances in Neural Information Processing Systems, 19:1137–
1144, 2006.

[29] Marvin Minsky and Papert Seymour. Perceptrons. MIT press, 1969.
[30] Dharmendra S. Modha, Rajagopal Ananthanarayanan, Steven K. Esser,

Anthony Ndirango, Anthony J. Sherbondy, and Raghavendra Singh.
Cognitive computing. Communications of the ACM, 54(8):62–71,
August 2011.

[31] Klaus-Robert Muller, Sebastian Mika, Gunnar Ratsch, Koji Tsuda,
and Bernhard Scholkopf. An introduction to kernel-based learning
algorithms. Neural Networks, IEEE Transactions on, 12(2):181–201,
2001.

[32] Ryan William Price. Hierarchical Temporal Memory Cortical Learning
Algorithm for Pattern Recognition on Multi-core Architectures. PhD
thesis, Portland State University, 2011.

[33] Abdel rahman Mohamed, George E. Dahl, and Geoffrey E. Hinton. Deep
belief networks for phone recognition. In NIPS Workshop on Deep
Learning for Speech Recognition and Related Applications, 2009.

[34] Marc’Aurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Sparse feature
learning for deep belief networks. In Advances in Neural Information
Processing Systems (NIPS 2007), volume 20, 2007.

[35] F Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386–
408iii, 1958.

[36] DE Rummelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. Nature, 323(9):533–535,
1986.

[37] Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. Inter-
national Journal of Approximate Reasoning, 50(7):969–978, 2009.

[38] Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and
Tomaso Poggio. Robust object recognition with cortex-like mechanisms.
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
29(3):411–426, 2007.

[39] David S. Touretzky and Geoffrey E. Hinton. Symbols among the
neurons: Details of a connectionist inference architecture. In IJCAI,
pages 238–243, 1985.

[40] Alan Mathison Turing. On computable numbers, with an application
to the entscheidungsproblem. a correction. Proceedings of the London
Mathematical Society, 2(1):544, 1938.

[41] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol. Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th International Conference on
Machine learning, pages 1096–1103. ACM, 2008.

[42] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and
Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising criterion.
The Journal of Machine Learning Research, 11:3371–3408, 2010.

[43] Shuicheng Yan and Huan Wang. Semi-supervised learning by sparse
representation. In SIAM International Conference on Data Mining, SDM,
pages 792–801, 2009.

[44] Changsong Zhou, Lucia Zemanová, Gorka Zamora, Claus C Hilgetag,
and Jürgen Kurths. Hierarchical organization unveiled by functional
connectivity in complex brain networks. Physical Review Letters,
97(23):238103, 2006.

[45] David Ziegler. Semi-supervised learning with sparse distributed repre-
sentations, 2009.

